If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3y2 + 23y + 16 = 0 Reorder the terms: 16 + 23y + 3y2 = 0 Solving 16 + 23y + 3y2 = 0 Solving for variable 'y'. Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 5.333333333 + 7.666666667y + y2 = 0 Move the constant term to the right: Add '-5.333333333' to each side of the equation. 5.333333333 + 7.666666667y + -5.333333333 + y2 = 0 + -5.333333333 Reorder the terms: 5.333333333 + -5.333333333 + 7.666666667y + y2 = 0 + -5.333333333 Combine like terms: 5.333333333 + -5.333333333 = 0.000000000 0.000000000 + 7.666666667y + y2 = 0 + -5.333333333 7.666666667y + y2 = 0 + -5.333333333 Combine like terms: 0 + -5.333333333 = -5.333333333 7.666666667y + y2 = -5.333333333 The y term is 7.666666667y. Take half its coefficient (3.833333334). Square it (14.69444445) and add it to both sides. Add '14.69444445' to each side of the equation. 7.666666667y + 14.69444445 + y2 = -5.333333333 + 14.69444445 Reorder the terms: 14.69444445 + 7.666666667y + y2 = -5.333333333 + 14.69444445 Combine like terms: -5.333333333 + 14.69444445 = 9.361111117 14.69444445 + 7.666666667y + y2 = 9.361111117 Factor a perfect square on the left side: (y + 3.833333334)(y + 3.833333334) = 9.361111117 Calculate the square root of the right side: 3.059593293 Break this problem into two subproblems by setting (y + 3.833333334) equal to 3.059593293 and -3.059593293.Subproblem 1
y + 3.833333334 = 3.059593293 Simplifying y + 3.833333334 = 3.059593293 Reorder the terms: 3.833333334 + y = 3.059593293 Solving 3.833333334 + y = 3.059593293 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-3.833333334' to each side of the equation. 3.833333334 + -3.833333334 + y = 3.059593293 + -3.833333334 Combine like terms: 3.833333334 + -3.833333334 = 0.000000000 0.000000000 + y = 3.059593293 + -3.833333334 y = 3.059593293 + -3.833333334 Combine like terms: 3.059593293 + -3.833333334 = -0.773740041 y = -0.773740041 Simplifying y = -0.773740041Subproblem 2
y + 3.833333334 = -3.059593293 Simplifying y + 3.833333334 = -3.059593293 Reorder the terms: 3.833333334 + y = -3.059593293 Solving 3.833333334 + y = -3.059593293 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-3.833333334' to each side of the equation. 3.833333334 + -3.833333334 + y = -3.059593293 + -3.833333334 Combine like terms: 3.833333334 + -3.833333334 = 0.000000000 0.000000000 + y = -3.059593293 + -3.833333334 y = -3.059593293 + -3.833333334 Combine like terms: -3.059593293 + -3.833333334 = -6.892926627 y = -6.892926627 Simplifying y = -6.892926627Solution
The solution to the problem is based on the solutions from the subproblems. y = {-0.773740041, -6.892926627}
| 3x-13-5x+4=3-8x*8+2x | | -4(3n-4)=32 | | (-a-2b+3)3ab= | | 2(2x+4)=3(x-5) | | 5x37/13 | | 6x+6+2x+4=4x+2 | | 8z+16=7z+13 | | -8=4-(9-c) | | 12z^2-11z+2=0 | | 4.15=9.2t | | -2x+1=9+2x | | 9(8+3(4))= | | 2t^2+7t-5=0 | | 6x-3=3(x+4) | | 2x+10=6x+9 | | -16x-20=-12x+20 | | a(3x+4)=b(4x+5) | | 20*3=8 | | 5x^5y^3+25x^3y^2+10xy= | | 4w-9w=-45 | | 62(y-42)=y+83 | | 6x-6=-8(x-8) | | 4+9=472 | | 0.3x=-26 | | x^2+y^2+20x-26y+253=0 | | (z/-2)-13=-8 | | 54x^5+18x^4+9x^3= | | (3x+4)2+(5x-1)2=38+x | | y=-x+56 | | (20x-6)(x-3)= | | 3x^4+2=50 | | (4x+7)+x= |